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Abstract

The baselined timeseries features to be computed in Alert Production include a
Lomb-Scargle periodogram ran on two classes of variable systems: RR Lyrae and
Eclipsing Binaries. Based on a simulated LSST-like cadence light curves taken from
the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC) we
perform an end-to-end test to characterize the periodicity recovery on the Alert Pro-
ductionmulti-band light curves. In both variable classes, we found that a single-band
Lomb-Scargle implementation yields to a low fraction of recovered periods, with a
significant preference on the simple periodic phenomena such as RR Lyrae. We also
investigated the results from a multi-band Lomb-Scargle and found an increased
fraction of recovered periodicities above 15% for the eclipsing binaries, and over 80%
for the RR Lyrae stars. Our findings suggest that a multi-band Lomb-Scargle should
be implemented for searching periodic phenomena through AP. We also asses the
computational and scientific performance of several configurations on simulated
alert data and find that our current configuration scales linearly with the number
of detections while assuming an heuristic frequency grid.
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Periodicity Analysis in Alert Production

1 Motivation

The characterization of periodicity from time-series is a fundamental constraint to numer-
ous astrophysical applications. Phenomenologically, estimating the periodicity and its signifi-
cance can shed light on stellar pulsation theory (Antonello & Pastori, 1981), distance estima-
tion and mapping of the Galaxy through the period-luminosity relationship (Skowron et al.,
2019), constraint fundamental parameters of stellar binaries (Farinella et al., 1979) and stellar
rotation (Walkowicz & Basri, 2013). In the recent decade, the use of periodicity has also been
extensively used as a feature to classify variable phenomena (Richards et al., 2011) across the
Hertzsprung-Russell diagram.

Previous work from Oluseyi et al. (2012) demonstrate the concept of injection-recovery test
for synthetically generated RR Lyrae templates from SDSS using the op_sim version 1.29 ca-
dence strategy. However, no study to date has demonstrated the recovery period distribution
of more complex periodic phenomena such as eclipsing binaries in real-time. In this study,
we focus specifically in the context of the LSST Alert Production system. The LSST Prompt
pipelines that will be completed via the DIA will identify changing sources in the difference
images. Alerts will be issued 60 seconds after the of the image readout. In this study, we per-
forman end-to-end injection-recovery analysis for periodicmulti-band time series to asses the
statistical significance of period finding in the context of the LSST AP as suggested in DMTN-
118.

2 Synthetic Light Curves

In this study we use the training set Extended LSST Astronomical Time-series Classification
Challenge (ELAsTiCC) light curves with a 12 month history that will best mimic the calculations
performed for AP. In short, ELAsTiCC is a real-time pipeline for generating mock photometric
alerts at the expected LSST rate. The photometric alerts will be distributed in real-time to
brokers to benchmark classification algorithms. The ELAsTiCC dataset uses the v.1.7 cadence
strategy from op_sims of the first three years of the survey. A single detection is based on
the DIA performance from DC2. Each light curve include photometric noise using Poisson
noise that includes the equivalent area, background noise per unit area, sky and CCD read
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noise.Most importantly, the ELAsTiCC light curves simulate force photometry alerts which we
recommend all time series features to be calculated upon.

For this investigation, we use two classes of periodic variable sources: RR Lyrae (RRL) and
eclipsing binaries (EB). While other quasi-periodic sources, such as AGN, might be of impor-
tance, in this study we aim to answer if computing the periodogram on periodic phenomena
is possible.We note one small drawback using the ELAsTiCC training is the relatively small
sample size (N=360) and low signal-to-noise ratio for the eclipsing binaries. In Section 3.6
we discuss the implications of the SNR of the EB light curves.To maximize the use different
eclipsing binary stars sampled at different phases, each light curve over a three year photo-
metric history is sampled at some random time and ensures that the maximum baseline is
less than 12 months. While a small EB sample size limits the search for a larger distribution
in periodicities, it remains nonetheless useful to see the periodicity recovery rates at different
sampling phases. In Figure 1, we show the underlying injected period distribution or both pe-
riodic classes.Finally, in Figure 2 we show the typical multi-band AP light curve sampled from
ELAsTiCC with uncertainties.
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Figure 1: True period distribution from the ELAsTiCC training set.

3 Injection-Recovery Testing

In this section we discuss the periodicity recovery rate for injected RR Lyrae and eclipsing
binaries in both scenarios of single-band andmulti-band light curves. All computations of the
periodogram henceforth will be the floating-mean Lomb-Scargle periodogram algorithm that
is implemented from gatspy VanderPlas & Ivezić (2015).
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Eclipsing BinariesRR Lyrae

Figure 2: The above panels demonstrate themulti-band light curves simulated from ElasTiCC
using RR lyrae (left panel) and eclipsing binaries (right panel). The first column of each panel
shows the observed light curves, and the second the phase folded light curves at the correct
period after 12 months.

3.1 Period Grid

The LSST will be search for periodic phenomena across both short and long timescales. The
first challenge when computing periodograms in the context of AP is choosing the right trial
period grid with separations that can lead to successful period finding.The periodogram is
full of local minima and maxima, thus in practice the global maximum, which corresponds
usually to the period with the highest power, is searched through a brute force period grid.
High resolution period grids can also be very computationally expensive that is not feasible in
the 60 second data latency of AP.

Inevitably, large searches in period space without an a priori will require an heuristic approach
to generating an appropriate period grid that will account for the light curve characteristics.
For this study, we use a heuristic frequency grid generator adapted in gatspy that uses the
light curve parameters to estimate the appropriate frequency grid length and separation. Un-
fortunately, for sparsely sampled light curves there does not exist a straightforward approach
to finding the optimum frequency grid. It is inevitable that some light curves will either require
coarser or finer frequency grids.

Generally, the frequency separation that we will be using for thus study can be approximated
using the duration of the light curve, including some sampling constant (𝒪 ) and the total num-
ber of computed periods as a function of theNyquist factor (𝐹𝑛𝑦𝑞𝑢𝑖𝑠𝑡), and number of detections
(N𝑑𝑒𝑡):
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𝛿𝑓 = 1
(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛) × 𝒪 (1)

𝑁𝑃 = 𝑖𝑛𝑡(
1
2𝒪𝐹𝑛𝑦𝑞𝑢𝑖𝑠𝑡𝑁𝑑𝑒𝑡) (2)

Building some intuition, the Nyquist factor pushes theminimum starting frequency to smaller
periods while the oversampling factor will increase the maximum frequency grid and overall
increase the resolution of the grid. In later sections we evaluate for each frequency grid the
period accuracy computed on the ELAsTiCC light curves.

3.2 Single Band Lomb-Scargle Periodogram

We first consider the case of the canonical single-band detections from AP. In this section we
aim to answer if the 12 month AP history in a single-band light curve is enough to recover
periods.The reader should refer to VanderPlas & Ivezić (2015) for a throughout review of the
Lomb-Scargle periodogram.

We consider the canonical floating-mean Lomb-Scargle to estimate the periodogram of 104

alert light curves in the r-band for three Fourier component modes. We caution the average
LSST field, the completeness for single-band periodic events will likely depend on the filter
since overall filter coverage is not uniform. For example, we would expect that the u-band
filter to suffer from lower completeness due to the smaller number of visits. In Figure 3 we
show the results of this analysis for RRL’s (rop row) and EB’s (bottom row). For each light curve
model, we randomly sample a light curve and compute the Lomb-Scargle periodogramusing a
heuristic period gridwith an oversampling factor of 2 andNyquist frequency of 30 (∼0.03 days)
to account for the fast periodic phenomena. We extrapolated the highest power period from
the periodogram and compare it to the true period. In Figure 3 we also include the number
of r-band detections for each light curve. We note that we did not find any reliable periods
beyond 5 days for the eclipsing binaries. This is likely due to the fact of the small sample size
beyond 5 days. Since we are re-sampling the same underlying models it is possible that the
light curve re-sampling is not adequate enough to identify correct large periods. As expected,
we did not find any preference of an optical single-band photometric filter that outperformed
the others. While the RR Lyrae exhibit at larger Fourier modelingmodesmore aliasing, overall
the recovery fraction of correctly identified periods is larger compared to the EBs. For both
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light curve models, we find that the single-band Lomb Scargle recovery fraction average to be
higher for light curves that had more detections. Overall we find consistent results for the
RR Lyrae done by a similar analysis by VanderPlas & Ivezić (2015). The true challenge of this
approach comes from the more complex light curve models such as the EBs.
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Figure 3: We show the injected (true period) versus recovered highest peak in the peri-
odogram for a sample of 1000 𝑟-band detections from RR lyrae and eclipsing binaries. Each
column shows the period recovery for N=1 to N=3 Fourier components when computing the
Lomb-Scargle periodogram.

On average, there will be approximately 80 detections in all photometric bands per 12 month
light curve history. Given the sampling rate of LSST per pointing, this entails that the majority
of single-band AP light curves would be too undersampled in order to compute a high con-
fidence periodicity. Even with low completeness, computing the Lomb-Scargle periodogram
on single-band time series alerts, LSST will likely find more periodic sources compared to any
other known survey due to the large survey volume.The single-band Lomb-implementation
are also faster by a factor of 5 due to the lower average number of detections per filter. We
conclude that the single-band Lomb-Scargle misses by a higher margin the underlying true
period due the small light curve photometric history. Now we turn our attention to the multi-
band Lomb-Scargle.

3.3 Multi-Band Lomb-Scargle Periodogram

Next, we test the multi-band Lomb-Scargle periodogram implementation adapted in gatspy

to our ELAsTiCC light curves. Given the rich multi-band alert detections LSST will deliver, we
expect that that conventional period finding algorithms to do better due to an increase of
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number of total detections. In short, the multi-band Lomb-Scargle periodogram we will be
considering for this study can be written out with two components that use implemented in
gatspy:

𝑦 = 𝜃0 +
𝑀𝑏𝑎𝑠𝑒

∑
𝑛=1

[𝜃2𝑛−1 sin(𝑛𝜔𝑡) + 𝜃2𝑛 cos(𝑛𝜔𝑡)] 𝜃(𝑘)
0 +

𝑀𝑏𝑎𝑛𝑑

∑
𝑛=1

[𝜃(𝑘)
2𝑛−1 sin(𝑛𝜔𝑡) + 𝜃(𝑘)

2𝑛 cos(𝑛𝜔𝑡)] (3)

First is the base Fourier component that describes the overall shared variability, and second
is the per band component that is modeled by the residuals of the base component with each
photometric filter. In practice, a larger configuration of base and band components can lead
to the estimation of more complex light curves. gatspy automatically determines through the
use of least-squaresminimization the scalar parameters from the above equation. For amore
detailed mathematical review of the multi-band Lomb-Scargle we suggest the review of Van-
derPlas & Ivezić (2015). In 4 we show the overall increase of performance in recovery fraction
from themulti-band Lomb-Scargle. Particularly, we notice that the RRL are over 50% complete
across all bins of number of total detections, and almost 99% complete for the highest num-
ber of detections bin. On the contrary, we see that the EB mutli-band completeness does not
outcompete the single-band approach especially for the smaller detection bins. We only see
a larger completeness performance for EB light curves with more than 70 detections across
all filters.

3.4 Peak Significance Metric

One imminent challenge beside choosing the right period grid, and model complexity is the
reported period significance. It is inevitable that the AP periodic pipeline will likely report
spurious periods, and both harmonics and aliases of the underlying period of the source.
The effects of aliasing and harmonics are typically identified by visual inspection of the phase
folded light curves. In this section we explore empirical metrics to evaluate peak significance
within the AP time frame. One common diagnostic used in the literature is the False Alarm
Probability (FAP) a given peak in the power spectrum. The FAP measures the probability un-
certainty associated with the selected peak under the null hypothesis. Generally, the reported
FAP for a specific period peak can be used to inform the user of its a trustworthy detection.
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Figure 4: Bar graph of the recovery fraction within 0.001 days of the period as a function
of number of detections. The lined bars are the results from the single-band Lomb-Scargle
periodogram assuming a two Fourier components. The filled bar graphs are the multi-band
Lomb-Scargle periodogram assuming a (N𝑏𝑎𝑠𝑒, N𝑏𝑎𝑛𝑑 )=(2,1) model configuration.

Given the absence of a true analytic solution to the Lomb-Scargle FAP, most methods rely on
computational approaches such as bootstrapping. Bootstrapping by virtue is computation-
ally expensive. For example, a 1% FAP rate would require 1000 bootstraps per light curve.
By simply scaling the expected number of periodic sources to be found in each LSST point-
ing, we find that that the number of computed periodogram to likely exceed the computing
resources of AP. Given the fast AP latency and number of periodic sources, a significant real-
time bootstraping is likely not feasible for AP. A more popular approach is to use parametric
FAP estimators that asymptotically converge to similar distributions of bootstraping FAP ap-
proaches. A sophisticated approach suggested by Baluev (2008) which uses extreme value
statistics to compute an upper bound of the false alarm probability for the alias-free case:

𝑃𝐹 𝐴𝑃 ≈ Γ((𝑁 − 1)/2)
Γ((𝑁 − 2)/2)√4𝜋 var (𝑡𝑖)𝑓u (1 − 𝑧obs)

𝑁−4
2 √𝑧obs (4)

Where 𝑧𝑜𝑏𝑠 is the power of the recovered peak and 𝑓𝑢 the maximum computed frequency for
the periodogram. The Baluev approximation has already been applied in other studies such
as Süveges et al. (2015) and is suggested as a computationally inexpensive and reliable form
to approximate the FAP, especially in the case of low aliasing and spectral leakage. More ro-
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bust techniques that account for correlated noise should be considered in future studies that
want to extrapolate FAP for correlated noise measurements such as the technique presented
by Delisle et al. (2020). For this study we will only consider the Baluev approximation. The
more complex issue arrises from the complex mathematics that involve the derivation of the
Baluev approximation for the multi-band Lomb-Scargle form. The derivation of such form
is beyond the scope of this paper, and we suggest future studies to explore if such solution
exists. For practical purposes, in our case we assume that the Baluev (2008) form will hold
true for the multi-band case, however we caution that the overall FAP estimates to possibly
be underestimated or overestimated.

To test whether the Baulev approximation holds true for the multi-band light curves we at-
tempt to correlate a conventional bootstraping significance approach with the Baluev form.
We begin with a 500 light curve sample of RRL and EB assuming a (N𝑏𝑎𝑠𝑒, N𝑏𝑎𝑛𝑑 )=(2,1) model
configuration. For each light curve, we run themulti-band Lomb-Scargle implementation 1000
times by sampling the light curve without replacement and extrapolate the maximum power
for each iteration. Finally, we compute the ratio between the recovered power of the original
Lomb-Scargle periodogram and themedian bootstrapped power, which can be interpreted as
a significance estimator. In Figure 5, we show the correlation between the Baluev and boot-
strap approach for each variable class and color-coded by the number of ugrizy detections.
For each variable class, we ran a Pearson-R correlation test and found in both cases a a neg-
ative r-slope with p-value significance p≪ 0.005. We also notice that the overall FAP levels of
the EBs to be higher since their recovery rates are much smaller.

Figure 5: Multi-band FAP rate computed via the Baluev approximation compared to a 2𝜎
bootstrap approach for 5000 RRL and EB alert light curves. For each light curve we also
color code the total number of 𝑢𝑔𝑟𝑖𝑧𝑦 detections.

Based onpreliminary estimates, Figure 5 suggest that parametric forms of the FAP can approx-
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imate the bootstrap significance without the computational cost of running N bootstraps. In
the cases of high SNR such as the RR Lyrae, we find that both significance estimates show a
dependency of the number of detections.

3.5 Timing Analysis

In this section we bench mark the average run time of the Lomb-Scargle periodogram im-
plementation from gatspy. The balancing act of high periodocity accuracy while confining
the calculations within the AP timeframe is a challenging act. While coarse period grids and
complex models can achieve more accurate periods, this will not be possible to do with AP.
Instead, in this section we will explore the lower limit of run time while tweaking the overall
period grid coarseness and model complexity.

The current gatspy, which is a pure Python based implementation of the Lomb-Scargle peri-
odogram, scales as 𝒪[N] algorithm for small N and becomes 𝒪[N2] at larger trial periods.The
unique rapid calculation of the periodogram emerges from the efficient use of linear algebraic
operations. The average run time also depends on the number of detections andmodel com-
plexity which we will explore in this section. For our run time analysis we will consider both a
single-band and multi-band case for the RR Lyrae only since the run time is not a function of
the underlying signal.

We first measure the effects of run time on the single-band RRL photometry in the 𝑟-band fil-
ter. For each light curve, we run the Lomb-Scargle periodogram 10 times per light curve, and
compute themedian run time. Additionally, we run this for each combination of oversampling
factor, Nyquist frequency, and Fourier components. In Figure 6, we display the results for
the single-band photometry. We also color code the average fractional error per light curve
iteration. As mentioned in the single-band Lomb-Scargle method, by design will be poorly
sampled especially within the 12 month history. As expected, due to the sparse sampled light
curves, the majority of light curves scale linearly with number of detections, and have aver-
age run times below one second. We do not find any major derivations from the average
run time when increasing the number of Fourier components from one to three. It is possi-
ble that single-band periodograms will generally be able to afford higher modes of Fourier
components while still fitting within the AP time frame. Overall the majority of single-band
periodograms are consistently below one second for the suggested period grid parameters.

In Figure 7 we show the average run time for the multi-band light curves by increasing Fourier
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Figure 6: Average run time per number of 𝑟 light curve detections. Each column represents
the model complexity of each multi-band Lomb Scargle periodogram. Within each panel,
we use a heuristically determined period grid by varying the oversampling factor and the
the Nyquist frequency. Finally, for each successive run we color code the fractional error
compared from the true period.

modes. Similarly to the single-band, we find a linear scaling between each period grid mode.
We find that the finer period grids are better at identifying the correct periods while also
keeping the run time at about one second per light curve with a 12 photometric history. It is
evident that the multi-band Lomb-Scargle implementation has the advantage of similar run-
times all while utilizing all six photometric bandpasses to find the period.
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Figure 7: Average run time per number of 𝑢𝑔𝑟𝑖𝑧𝑦 light curve detections. Each column rep-
resents the model complexity of each multi-band Lomb Scargle periodogram. Within each
panel, we use a heuristically determined period grid by varying the oversampling factor and
the the Nyquist frequency. Finally, for each successive run we color code the fractional error
compared from the true period.

Further tests should be done to explore the effects of the number density of periodic sources
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per LSST pointing including other parameters such as achieved depth. Other metrics, such as
minimum period grid required per pointing to recover a period source should also be inves-
tigated.

3.6 Current Limitations

From our analysis, it is evident that the eclipsing binaries overall lack completeness in both
cases of single and multi-band. We suspect that the main culpruit of low completeness to be
the average low SNR that computed for the ELAsTiCC eclipsing binary sample. For example,
in Figure 8, we show for a sample of all training ELAsTiCC light curves with their average SNR
for the RRL versus EB’s. On average we found that the EBs are skewed toward a low SNR while
many more RRL have high amplitude variations and thus higher SNR. Given the noisy EB light
curves provided from ELAsTiCC is is possible that our current estimates would be considered
for periodic events close to the limiting LSST magnitude.

As a proof of concept, we can validate a possible scenario of high SNR eclipsing binary light
curves using the cadence strategy of op_sims v.1.7 using an in-house light curve building tool.
First, we will assume that the phase-folded EB light curve can be modeled by a decomposed
four-component Fourier series model:

𝑚(𝑡) = 𝑚0 +
𝑁=4

∑
𝑖=1

𝐴𝑖𝑐𝑜𝑠(2𝜋𝑖Φ) + 𝐵𝑖𝑠𝑖𝑛(2𝜋𝑖Φ) (5)

where the phase-offset can be defined as:

Φ(𝑡, 𝑡0) = 𝑡 − 𝑡0
𝑃 − 𝑖𝑛𝑡(

𝑡 − 𝑡0
𝑃 ) (6)

We adopt the fitted Fourier terms from Deb & Singh (2011) where the parameters for 62 lu-
minous bright single-band eclipsing binary light curves are modeled from the All Sky Auto-
mated Survey (ASAS)-3 project. We assume that the Fourier terms apply to all photometric
bandpasses, while adding a small color offset between each photometric filter (by roughly
assuming that these are equal temperature eclipsing binaries). Using the 62 EB models, we
sample each model at the 𝑢𝑔𝑟𝑖𝑧𝑦 cadence separation described by the op_sims v.1.7 simu-
lation. For each EB event, we randomly assign a coordinate within the LSST footprint and a
distance drawn from a log-normal distribution with mean 5 kpc and standard deviation of 2.
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Using a log-normal distributon of absolutemagnitudes we then solve the distancemodulus to
infer the apparent magnitude of the system, without taking into account the effects of Galac-
tic extinction. Additionally, for each photometric bandpass we assume a random constant
color offset between zero and 4 magnitudes. To estimate the expected SNR from a source
with magnitude 𝑚 by assuming a Gaussian distribution of photons we apply the standard
𝑚5𝑠𝑛𝑟 equation. Finally, to compute the photometric error we use the 𝑚5 SNR estimate the
photometric errors associated with each light curve. We run the multi-band Lomb-Scargle on
the multi-band light curves and asses the recovery fraction. In Figure 9 we show the injected
versus recovered period for our custom light curves with overall higher SNR compared to the
ELAsTiCC light curves overall recover a larger fraction the true underlying injected periods.
We notice that the completeness especially increases at the (N𝑏𝑎𝑠𝑒, N𝑏𝑎𝑛𝑑 )=(2,1) Fourier model
configuration.
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Figure 8: Distribution of signal-to-noise ratio for simulated ELAsTiCC light curves. We com-
pute the median signal-to-noise ratio per light curve in the 𝑢𝑔𝑟𝑖𝑧𝑦 bandpasses. We smooth
each distribution using a Gaussian Kernel Density estimator. Top panel is the RR Lyrae and
bottom is the Eclipsing Binaries.

Future investigations prior to the onset of the LSST should investigate a larger sample of eclips-
ing binary populations at higher luminosities and more throughout combinations of physical
parameters.
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Figure 9: Multi-band injection-recovery test for 5000 RRL (top row) and EB (bottom row).
Each column title includes the number of Fourier base and band terms used to compute
the Lomb-Scargle periodogram. Additionally we color code each recovered period by the
number of detections. The overlaid curved lines represent the n=1 aliasing, while the straight
lines represent the n=1,2 harmonics.

3.7 Implementation to LSST Stack

Asof 2023, Astropy1 has implemented for public use themulti-band Lomb-Scargle periodogram
directly from the gatspy implementation. To use the Astropy MLSP implementation, we fol-
lowed the online open-source documentation tutorial for the basic use of the API that has
a slightly different API from the inherent gatspy implementation2. Using the same ELAsTiCC
light curves and period grid parameters as in the previous sections, we found similar perfor-
mance both in timing and period recovery between both algorithms. The current implemen-
tation on the Stack assumes (Nbase, Nband)=(1,1), and significance is evaluated via the Baluev
approximation (i.e see equation 3 in Süveges et al. (2015)). As part of releasing themulti-band
Lomb-Scargle period and its significance, we also report the model fit parameters described
in equation 3. Assuming each light curve as (k) unique bands, we define the Amplitude (𝐴𝑘)
and Phase (𝜙𝑘) from the terms in the linear model for each filter:

𝐴𝑘 = √(𝜃𝑘
1 )2 + (𝜃𝑘

2 )2 (7)

𝜙𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝜃𝑘
2 /𝜃𝑘

1 ) (8)

1Astropy v5.3.3
2https://docs.astropy.org/en/stable/timeseries/lombscarglemb.html
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3.8 Conclusions

In conclusion, this study investigates the periodicity recovery rate of RR Lyrae and eclipsing
binaries on single-band and multi-band light curves using the Extended LSST Astronomical
Time-series Classification Challenge (ELAsTiCC) training dataset. Our results suggest that us-
ing a fixed heuristic frequency grid can successfully recover the true underlying periods from
the Lomb-Scargle periodogram using gatspy. We ran single-band Lomb-Scargle on the 𝑟-band
light curves and overall found our recovery fraction to be less than 30% for RRL and less than
10% for EB. On the contrary, we find a significant leverage and boost of performance using the
multi-band Lomb-Scargle approach and find the RRL recovery fraction to be as high as 95 %,
while the EBs to be 40 %. We speculate that the low recovery fraction of the EB’s are likely due
to the injected low SNR models in the ELAsTiCC training dataset. After using an in-house light
curve generation tool using the decomposed Fourier terms for EB’s and RRL, we find an im-
provement in the overall recovery fraction. This work also suggest that the analytic Baluev FAP
approximation correlates significantly with a more traditional bootstrap FAP approach, hence
we suggest that this can be used as a proxy for peak significance. Within the time limitations
in AP, we demonstrate through a benchmark timing analysis that a heuristic frequency for
both single-band and multi-band Lomb-Scargle periodograms with a 12-month photometric
history are scalable to the time requirements of the LSST AP. It is suggested that future inves-
tigations prior to the onset of the LSST AP should investigate a larger suite of eclipsing binary
populations at higher luminosities and with more throughout combinations of physical pa-
rameters, including a more robust analysis on the FAP estimates for cases of correlated noise
and high aliasing.
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DOI Digital Object Identifier
ELAsTiCC Extended LSST Astronomical Time Series Classification Challenge
LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-

scope)
RRL RR Lyrae stars
SDSS Sloan Digital Sky Survey
SNR Signal to Noise Ratio
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